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NOMENCLATURE 

cylinder diameter; 
Grashof number,ga (r,- T,)@/v’; 
acceleration of gravity; 
local heat-transfer coefficient; 
thermal conductivity; 
Nusselt number, hR/k; 
hR/k at stagnation point; 
Nusselt number, hx/k; 
Prandtl number; 
local heat flux; 
cylinder radius; 
Reynolds number, (/, D/v; 
Reynolds number, Ux/v; 
wall temperature; 
free stream temperature; 
local free stream velocity; 
velocity of approach flow; 
coefficients, equation (1); 
dimensionless coordinate, x/L; 
coordinates. 

Greek symbols 

lj, thermal expansion coefficient; 

5. 

kinematic viscosity; 
angular coordinate; 

Q mixed convection parameter, equations (6) and (7). 

INTRODUCTION 

HEAT transfer from horizontal cylinders under conditions 
of combined forced and natural convection flow has been 
the subject of numerous experimental studies, and [l-7] 
are representative of the available literature. On the other 
hand, aside from correlation efforts, there appears to have 
been little analytical study of the problem. Although the 
general case of mixed convection about a heated horizontal 
cylinder situated in an arbitrarily oriented forced convection 
flow is not readily amenable to analysis, it is possible to 
obtain solutions for a less general version of the problem. 
As will be demonstrated here, the case of an isothermal 
heated cylinder in a vertical forced convection upflow can 
be solved provided that a boundary-layer region exists. This 
fact was recognized by Acrivos [8], who obtained the 
Pr + 0 and Pr -+ co limits for the Nusselt number at the 
lower stagnation point. 

*In those cases, similarity may be achieved if contrived 
boundary conditions are employed. 

It is well established that for both forced convection 
and natural convection, a boundary-layer flow will exist on 
the lower part of the cylinder for moderate and large values 
of the Reynolds and Grashof numbers. Such a boundary- 
layer flow should also exist for mixed convection under 
aiding conditions. 

For the isothermal cylinder, the separate forced convec- 
tion and natural convection boundary layers possess an 
interesting common characteristic, namely, that they both 
have the same dependence on the streamwise coordinate 
(measured from the lower stagnation point). Consequently, 
the corresponding mixed convection problem retains this 
same streamwise dependence. Therefore, the mixing of the 
two forms of convection is not, in itself, the cause of 
boundary-layer nonsimilarity. This outcome is in contrast 
to mixed convection problems for other geometries such as 
horizontal plates and vertical plates and cylinders, where the 
mixing of the two flows causes nonsimilarity.* 

ANALYSIS 

A schematic diagram of the horizontal cylinder problem 
showing coordinates and nomenclature is given in Fig. 1. 
The boundary-layer flow is driven both by the external 
pressure gradient dpjdx due to the free stream velocity 
of the forced convection and by the buoyancy force 
gflP(T- T,)sin@. Via Bernoulli’s equation, the pressure 
gradient is replaced by -pU(dU/dx), where U is the local 
free stream velocity which, for a cylinder, can be rep- 
resented by 

L’ = u,(.x,!R) +u&/R)~ +u,(x/R)’ + (1) 

The constants u~.u~,u~,.,. differ from those for potential 
flow due to displacement of the streamlines which results 
from boundary-layer separation. Values measured by several 
investigators are given in [9]. For the buoyancy term, the 
expansion of the sin 4 factor, with 4 = .x/R. is 

sin4 = (x/R)-(li6)(~/R)~ +(1/120)(~,‘~)~+ .,. (2) 

Inspection of equations (1) and (2) suggests the similarity 
of the x-dependence of the two force components which 
drive the boundary-layer flow, and this may be confirmed 
by a complete evaluation of the respective terms. 

The first term of the respective series (1) and (2) pertains 
to the lower stagnation point. If the conventional constant 
property momentum equation and non-dissipative energy 
equation are used, with the aforementioned pressure and 
buoyancy forces as inputs to the former, and a similarity 
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FIO. 1. Stagnation point heat transfer results, Pr = 0.7. 

transformation is carried out, there results for the stagnation 
point 

fl”‘+,f, /i”-f;J+RfI”+ 1 = 0 

a;; + Prf, s; = 0 

with boundary conditions 

(3) 

(4) 

./i(O) = r;(o) = ()o(r;) = 0, O,(O) = /Jr/-, = I. (51 

In addition to the Prandtl number Pr, these equations 
contain another parameter R whose definition is 

(6) 

The numerator and denominator respectively represent a 
Grashof number and the square of a Reynolds number. 
Inasmuch as U, = CL:, , where C - 1.8, II can be rephrased as 

The transformation that led to equations (3)- (5) was 
patterned after that for pure forced convection, i.e. 

17 = ~,~,(ur :\‘R), 1,0 = (vu, .Y’ R)‘l;(t/) (84 

O”(?/) = (-I‘- T,,)l( T, - T, ). (W 

Alternatively. a transformation patterned after that for pure 
natural convection might have been employed, yielding a 
set ofgoverning equations different from (3)-(5). During the 
course of the numerical computations, which spanned the 
range from 0 = 0 to R = z, it was found convenient to 
employ equations (3)-(5) for small and intermediate R, and 
to use the alternate set of equations for intermediate and 
large R. It was verified that the two sets of equations gave 
the same results. 

For the solution away from the stagnation region, a 
Blasius series was employed on the basis of its satisfactory 
performance in the pure forced convection and pure natural 
convection problems [10&13]. The momentum and energy 
equations were reduced to ordinary differential equations 
by the series 

i = (vR ?I )‘(u, .~l,(rl)+4u,X3J;(r~) 

+6~sX’fi(il)+...) (9) 

0 = &)(Y/) + X%,(n) + XV),(~) + (10) 
in which X = x;‘R and 1) now represents (T- 7’,)/(T,- T=). 

The differential equations for the f, and ti, were found to 
contain II ,. us. us,. as parameters. To eliminate the par- 
ameters, universal functions were deduced. Owing to the 
mutual coupling between thefand 0 equations, the task of 
determining the universal functions was more demanding 
than that for cases where the velocity is independent of the 
temperature. The final slate of universal functions is 

The subscript notatron was selected to indicate the mutual 
coupling of the functions. Thus, for example. ,!,, and t12, 
are a coupled pair, as are .!I, and t14,, etc. Wtth the sub- 
division ofthe functions indtcated by equations (11) and (12), 
the differential equations and boundary conditions for the 
./, and 0, are readily derived. They will be omitted here to 
conserve space. 

Numerical solutions were carried out using Gill-Runge- 
Kutta integration in conjunction with a shooting method 
to fulfil the boundary conditions at large II. 

RESI’LTS 

L-‘or the solutions, the Prandtl number was fixed at 0.7 
(gases). The range of the mixed convection parameter Q 
extended from zero to infinity and was covered by about 
25 values. Local heat-transfer results were deduced from the 
solutions via Fourier’s law. If k = q!(T, - T, ), then 

(hRk);:\/(u, R/v) = -(O,(O) + (x. R)?&(O) 

+ (u;R)“fl;(O) + .). (13) 

The derivatives appearing in equation (13) were evaluated 
in terms of the universal functions of equations (I I) and 
(12b). 

At the stagnation point, where U = u,(ujR), equation (13) 
reduces to 

’ (hR:k).:,~(u, R’r’) = (~.x,~):~.(UX:~~) 

= h’~c,~~,Re, = -f&,(O). (14) 

The stagnation point heat-transfer results evaluated from 
equation (14) are plotted in Fig. I as a function of the mixed 
convection parameter. Also appearing in the figure are two 
dashed lines which represent the pure forced convection 
and pure natural convection asymptotes. The equations of 
these lines are 

NU ,;,!Rr, = 0.4959, .&‘u,~v~Re, = 0.3702Q;2’. (15) 

The maximum deviation between the true solution and the 
envelope formed by the asymptote lines occurs at R - 3.2 
and is about 20 per cent. As expected, under aiding con- 
ditions, the transfer coefficients for mixed convection exceed 
those for either pure forced convection or pure natural 
convection. 

The asymptote lines facilitate determination of the con- 
ditions for which mixed convection prevails at the stag- 
nation point. If the onset of mixed convection is defined in 
terms of five per cent deviations from the pure flows, the 
mixed convection range is 0.6 < Q < 26. 

An abbreviatedlistingof the f&(O) vatues used to construct 
Fig. 1 is given in Table 1. The lower half of the table contains 
values of [&(O)]/Q * deference to the approach to pure m 
natural convection at large 0 

To facilitate the evaluation of local heat-transfer co- 
efficients at locations C$ = .u.‘R away from the stagnation 
point, a listing of derivatives OLj(0) is given in Table 2. For 
the larger R, values of (f&(O))/fil are tabulated to show the 
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Table 1. Stagnation point results 
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R 0 0.2 0.5 1 2 4 6 

-K(O) 0.4959 0.5051 0.5179 0.5370 0.5694 0.6200 0.6598 

10 20 60 160 400 
0.4059 0.3919 0.3802 0.3754 0.3731 0.3:02 

Table 2. Values of 6”‘j(0) for 0 < Q < 6 and (et(O))/Q* for 10 < R < CE 

n kj= 21 22 41 42 43 44 

0 - 0.4476 0 -@5860 0.1906 0 0 

0.2 -0.4175 0.00179 -0.5432 0.1304 - 0~00403 -OOOO161 

0.5 - 0.3805 0.00406 -0.4912 0.06942 - 0.00785 - 0.000335 
I -0.3340 0.00704 - 0.4265 0.01096 -0.01106 - 0.0005 16 

2 - 0.2727 0.01130 - 0.3426 - 0.03809 -0.01287 - 0.000693 
4 - 0.2060 0.01662 -0.2533 - 0.06065 -0.01220 - 0+)00807 

6 -01692 0.02008 -0-2050 -0.06156 -PO1086 -0.000837 
10 - 0.07229 0.01389 - 0.08586 - 0.03079 - 0.00493 - 0.000475 

20 - o@lo50 0.01485 - 0.04668 - 0.01907 - 0.00256 -0~000393 

160 - 0.00660 0.01589 - 0.00678 - 0XiO301 - 0.000372 - OQOC!247 

cc 0 0.01609 0 0 0 -0~000186 
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FIG. 2. Illustrative angular distributions of the local 
heat-transfer coefficient, Pr = 0.7. 

approach to the natural convection limit. Table 2 is used 
in conjunction with equations (13) (1 I), and (12b). Values 
of BLj(0) at other fi are available on request, but those of 
Table 2 should be sufficient. The results of Tables 1 and 2 
for the limiting cases of R = 0 and Q = cc agree very well 
with those in the literature, with the exception of &(O). In 
that case, the prior investigations [12,13] do not agree 
among themselves, and it is felt that the present value is 
correct owing to superior computing equipment now 
available. 

In order to obtain heat-transfer coefficients from equation 
(13), numerical values are needed for the coefficients 
ai, U~, us, in the representation of the free stream velocity 

(equation (1)). It does not appear that any experimental 
information for the free stream velocity distribution in mixed 
convection is presently available. Therefore, at present, 
definitive results for the angular distribution of the heat- 
transfer coefficient cannot be obtained. It is, however, still 
worthwhile to illustrate the results using whatever infor- 
mation is available, and this has been done in Fig. 2. 

In the figure, the local Nusselt number Nu = hR/k at an 
angular position 4 is plotted relative to the corresponding 
stagnation point value Nuo. The angular coordinate that 
appears on the abscissa was terminated at 70” owing to the 
expected boundary layer separation. Three sets of results 
are given, corresponding respectively to the free stream 
velocity measurements of Hiemitz, Sogin and Subramanian, 
and Schmidt and Wenner (see [9]). The main message of 
the figure is that there is a substantially greater angular 
dependence when forced convection is dominant (small Q) 
than when natural convection is dominant (large a). 

It is relevant to consider comparisons between the present 
results and those of experiment. Such comparisons are 
difficult to make because the analysis provides local results 
for a portion of the cylinder whereas the experimental 
results are in the form of average coefficients for the entire 
cylinder. Furthermore, many of the experiments were per- 
formed at Reynolds and Grashof numbers that are below 
the values needed to ensure the existence of a boundary 
layer and, in other cases, fluids other than gases were 
employed. 

The experiments of [4] appear to be the most appropriate 
candidate for comparison with the analytical results. In [4], 
the average Nusselt number for mixed convection is com- 
pared with that for pure forced convection, the ratio being 
correlated as a function of GrD/Rei in the range of this 
parameter from zero to nine. At GrD/Rei = 9, the afore- 
mentioned Nusselt number ratio was found to be about 1.73. 
From the present results, with Q = 1.35 from equation (7), 
the ratio of the local mixed convection to forced convection 
Nusselt numbers is about 1.1 at the stagnation point and 
1.3 at 4 = 70”. This comparison of analysis and experiment 
suggests that mixed convection effects are much larger on 
the aft portion of the cylinder than on the fore portion, 
with a shift in the separation point being highly likely. It 
might be noted that the experiments were performed with 
cylinders having only moderate length-diameter ratios and 
at fairly low Reynolds numbers (100 to 3000) and these 
factors might have affected the results. 
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A NOTE ON HEAT-TRANSFER MECHANISM AS APPLIED TO 
FLOWING GRANULAR MEDIA 

J BROUGHTON~ and J. KUBIE$ 

(Received 9 June 19751 

4 
Fo, . 

t 

particle diameter [m]; 
w/d’ average Fourier number; 
average film heat-transfer coefficient [W/m2 K]; 
effective thermal conductivity of granular 
medium [W,ImK] ; 

k 
i,’ 

gas thermal conductivity [W/mK]; 
surface conductance [W/m* K]: 

L, length of plate [m] ; 
Nu,, Kd/k,, contact Nusselt number; 

Nut, tid/k,, average Nusselt number; 

NUl.> hL/k, average Nusselt number: 

Nu,, Ad/k, average Nusselt number: 

Pe,, CJL/a, Peclet number; 

PeZ , Pe,(k/k,)‘(d/L)‘, Peclet number: 
u, velocity of moving granular medium [m/s]. 

KOMENCLATURE 

Greek symbols 

effective thermal diffusivity of granular medium 
[m*/s]: 
experimental constant; 
L/U, mean packet residence time [s] ; 
experimental constant. 

INTRODLICTIOR 

OVER the last twenty years there has been a continued 

interest in the mechanism of heat transfer between granular 
media and surfaces, as in dense-phase conveying, or in 
fluidized beds. Several mechanisms of heat transfer have 
been considered, however, two main approaches can be 
discerned; the packed-bed approach as used by Mickley and 
Fairbanks [l] and Baskakov [2] for example; and the 
single particle approach as used by Botterill and Williams 
[3] and Ziegler and Agrawal [4]. The recent paper by 
Sullivan and Sabersky [5] proposed two models describing 
heat transfer in flowing granular media; the former similar 
__~ -_- ~. 

tunilever Research Ltd., Sharnbrook, Bedford, England. 
SCentral Electricity Research Laboratories, Leatherhead, 

Surrey, England. 

to that of Gabor [6]; the latter identical to that of Baskakov 
[7] (a modified Mickley-Fairbanks approach). As the 
interesting paper by Sullivan and Sabersky discounted the 
wide literature of the fluidized bed field, it is worthwhile 
and instructive to consider and analyze their data and con- 
clusionsin the light of fluidized bed heat-transfer knowledge. 

THEORETICAL CONSIDERATIONS 

One of the traditional approaches to heat transfer in 
moving granular media has been to solve the transient 
heat-transfer equations during the time of contact, or the 
mean residence time of the medium on the surface, r, which 
can be readily derived from the variables used by Sullivan 
and Sabersky by transforming 

T = L;u. 

The groups most commonly used in transient conduction 
studies can then readily be related to those used by Sullivan 
and Sabersky, as shown in Table I. 

Table I. Transformation of variables 

Usual variable Sullivan and Sabersky [5] form 

m 
Fo, 

d2 

L 2 
(PG’ ,I !> 


